(2x^2+5x)+(10x+3)=180

Simple and best practice solution for (2x^2+5x)+(10x+3)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x^2+5x)+(10x+3)=180 equation:



(2x^2+5x)+(10x+3)=180
We move all terms to the left:
(2x^2+5x)+(10x+3)-(180)=0
We get rid of parentheses
2x^2+5x+10x+3-180=0
We add all the numbers together, and all the variables
2x^2+15x-177=0
a = 2; b = 15; c = -177;
Δ = b2-4ac
Δ = 152-4·2·(-177)
Δ = 1641
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{1641}}{2*2}=\frac{-15-\sqrt{1641}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{1641}}{2*2}=\frac{-15+\sqrt{1641}}{4} $

See similar equations:

| -5(-3y+3)-3y=4(y-4)-1 | | 7x+20=70 | | 1/3(9x-6)=3x+7 | | 2v−1=3 | | 42=2(s-63) | | 6q+4=-q+5 | | 45=x/4+9 | | 9+6f=81 | | 28=w/4+16 | | 83=5u-12 | | 5-x/3=3x+1 | | 7w+5=3w=15 | | y/4-13=9 | | 0x+2=9x+8 | | 6x+1+7x=92 | | -3n-5=-2; | | 9x-2x+4x=11 | | -y2+6y+112=0 | | -9n+10=11; | | 6x+7x-3x=67+3 | | 28)-(8-12k)=-2(8k-4) | | 7x+4=4x-10 | | 3/4(x+1/2)=5/8 | | 2x/2+x/6=5 | | 9x-2x+4x=3x | | 7x-38=2x-3 | | 2x-7=-3x+6 | | 72=8⋅b | | 7x-5+8=28 | | 9x-22=7x-6 | | 5x-4+10x-11=180 | | -5(x+2)=x-16 |

Equations solver categories